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Abstract

The majority of existing approaches to mobile robot
mapping assumes that the world is static, which is gen-
erally not justified in real-world applications. However,
in many navigation tasks including trajectory planning,
surveillance, and coverage, accurate maps are essen-
tial for the effective behavior of the robot. In this pa-
per we present a probabilistic grid-based approach for
modeling changing environments. Our method repre-
sents both, the occupancy and its changes in the cor-
responding area where the dynamics are characterized
by the state transition probabilities of a Hidden Markov
Model. We apply an offline and an online technique to
learn the parameters from observed data. The advan-
tage of the online approach is that it can dynamically
adapt the parameters and at the same time does not re-
quire storing the complete observation sequences. Ex-
perimental results obtained with data acquired by real
robots demonstrate that our model is well-suited for rep-
resenting changing environments. Further results show
that our technique can be used to substantially improve
the effectiveness of path planning procedures.

Introduction
Accurate maps of the environment are essential for many
mobile robot navigation tasks such as path planning, surveil-
lance, or coverage. Although real-world environments gen-
erally are dynamic, most existing mapping approaches as-
sume the environment to be static. Accordingly, they do
not explicitly account for potential changes in the environ-
ment. In several navigation systems, the robots use maps
that are built in an offline phase and not changed during op-
eration (Burgard et al. 2000; Montemerlo, Roy, and Thrun
2003; Quigley et al. 2009). Although there are robust ap-
proaches that can handle inconsistencies between the map
and the actual measurements, largely inconsistent models
can lead to suboptimal navigation behavior or maybe nav-
igation failure.

In this paper we present a generalization of occupancy
grids (Moravec and Elfes 1985), one of the most popular
mapping approaches in mobile robotics. The fundamental
difference between our approach and occupancy grids is that
while occupancy grids regard the state of a cell as static,
our representation explicitly models state changes, which
makes it particularly suited for changing environments. Our

method applies cell-specific hidden Markov models (HMM)
to represent the belief about the occupancy state and state
transition probabilities of each grid cell. The HMM frame-
work provides efficient algorithms for estimating the model
parameters. This allows us to learn how the environment
changes from observations made by the robot. In addition
to the standard offline learning approach, we apply a vari-
ant that is able to learn these parameters in an online fashion
and only requires the storage of a constant amount of infor-
mation extracted from the observations made by the robot.
Within the framework we can efficiently estimate the occu-
pancy state of a cell from the observed evidence as it be-
comes available, making it possible to adapt the represen-
tation continuously over time. Accordingly, our approach
provides more accurate state estimates. Furthermore, the
learned parameters allow us to make predictions about the
future occupancy state of a cell.

The contribution of this work is a mapping approach
for changing environments that represents the occupancy of
the space and explicitly characterizes how this occupancy
changes over time. We describe our model, how the repre-
sentation can be updated as new observations become avail-
able, and how to predict future occupancy states. Further-
more, we present two techniques, one offline and one online,
to estimate the state transition probabilities of the model
from observed data. We evaluate our approach in simula-
tion and using real-world data. The results demonstrate that
our model yields highly accurate maps for changing envi-
ronments. Furthermore, we describe how the explicit repre-
sentation of the dynamics in the environment can be used to
improve the path planning performance of a robot.

Related Work
Previous work on mapping changing environments can be
divided into two categories: approaches that filter out sen-
sor measurements caused by non-static elements and ap-
proaches that explicitly model aspects of the environment
dynamics. Filtering out sensor measurements is typically
based on probabilistic sensor models that identify the mea-
surements which are inconsistent with a reference model of
the environment (Fox, Burgard, and Thrun 1999; Burgard et
al. 2000; Hähnel et al. 2003). In contrast to these approaches,
the method presented in this paper explicitly characterizes
the dynamics of the environment in the representation itself



instead of relying on specific sensor models.
Several authors have proposed augmented representations

of the environment that explicitly represent dynamic ob-
jects. The approaches of Anguelov et al. (2002) and Biswas
et al. (2002), for example, compute shape models of non-
stationary objects. They create maps at different points in
time and compare those maps using an EM-based algorithm
to identify the parts of the environment that change. Sim-
ilarly, Gallagher et al. (2009) build maps for individual ob-
jects which can then be overlaid to represent the current con-
figuration of the environment. Petrovskaya and Ng (2007)
extend occupancy grid maps with parameterized models of
dynamic objects like doors and apply a Rao-Blackwellized
particle filter to estimate the pose of the robot and the state
of these objects. Wang et al. (2007) estimate the state of non-
parametric dynamic objects using Kalman filters while at the
same time constructing a map of the static objects in the en-
vironment. The above-mentioned approaches are based on
the identification and modeling of dynamic objects in the
environment. Our approach, in contrast, does not depend on
dynamic object detection and high-level object models; it
considers only the occupancy of the space at a lower level of
abstraction.

The problem of modeling the occupancy of the space in
changing environments has also been addressed in the past.
Murphy (1999), for example, presents a grid-based represen-
tation of the environment and explicitly models occupancy
state changes in the context of robot localization. Chen et
al. (2006) and Brechtel, Gindele, and Dillmann (2010) use a
similar grid-based representation for changing environments
to track dynamic objects. These approaches, in contrast to
our method, assume that the state transitions are a priori
given and do not include algorithms to learn them from data
observed by the robot.

Wolf and Sukhatme (2005) propose a model that main-
tains two separate occupancy grids, one for the static parts
of the environment and the other for the dynamic parts. Biber
and Duckett (2005) present an approach to represent the en-
vironment on multiple timescales simultaneously. For each
timescale a separate sample-based representation is main-
tained and updated using the observations of the robot ac-
cording to an associated timescale parameter. Konolige and
Bowman (2009) describe a vision-based system where cam-
era views are grouped into clusters that represent differ-
ent persistent configurations of the environment. Changes
in the environment are handled by deleting views based on
a least-recently-used principle. While these approaches are
also able to continuously adapt to changes over time, the
fundamental difference to our method is that we provide an
explicit characterization of the changes of the environment.

Occupancy Grids for Changing Environments
Occupancy grids, as they were introduced by Moravec and
Elfes (1985), are based upon a regular tessellation of the
space into a number of rectangular cells. They store in each
cell c of this grid the probability p(c) that the corresponding
area in the environment is occupied by an obstacle. One par-
ticular assumption in the context of occupancy grids is that
the environment is static. Accordingly, there is no explicit

Figure 1: State transition probabilities in a small hall where
people usually go from the office in the top left corner to
one of the two exits on the right. The left and right images
correspond to the distributions po|fc and p

f |o
c respectively:

the darker the color, the larger the state change probability.

model about how the occupancy changes over time in this
approach. The approach described in this paper overcomes
this limitation. It applies HMMs (see Rabiner (1989)) to ex-
plicitly represent both the belief about the occupancy state
and state transition probabilities of each grid cell.

An HMM requires the specification of a state transition
probability, an observation model, and an initial state distri-
bution. Let ct be a discrete random variable that represents
the occupancy state of a cell c at time t. The initial state dis-
tribution p(c0) specifies the occupancy probability of a cell
at the initial time step t = 0 prior to any observation.

The state transition model p(ct | ct−1) describes how the
occupancy state of cell c changes between consecutive time
steps. We assume that the changes in the environment are
caused by a stationary process, that is, the state transition
probabilities are the same for all time steps t. Since a cell
is either free (free) or occupied (occ), the state transition
model can be specified using only two transition probabil-
ities, namely

po|fc = p(ct = occ | ct−1 = free) (1)

and
pf |oc = p(ct = free | ct−1 = occ) . (2)

Note that, by assuming a stationary process, these probabil-
ities do not depend on the absolute value of t. Therefore, the
dynamics of a cell at any time can be captured by its transi-
tion matrix

Ac =

[
1− pf |oc p

f |o
c

p
o|f
c 1− po|fc

]
. (3)

This transition model generalizes the one utilized by Mur-
phy (1999) and Chen et al. (2006) where po|fc = p

f |o
c . Fig-

ure 1 depicts the transition probabilities in a small hall. The
figure shows areas where highly dynamic elements like peo-
ple usually move and the areas where more static elements
such as furniture and walls are placed as having different
state change probabilities.

The observation model p(z | c) represents the likeli-
hood of the observation z given the state of the cell c. In



this paper, the observations correspond to range measure-
ments obtained, for example, with a laser range scanner. For
a given cell and measurement we consider two cases: the
measurement ends up in the cell (a hit) or it goes through
the cell without ending in it (a miss). Accordingly, the ob-
servation model can also be specified using two probabili-
ties: p(z = hit | c = free) and p(z = hit | c = occ). We ad-
ditionally take into account the situation where a cell is not
covered by the measurement. This is necessary since the
transition model characterizes state changes only for con-
secutive time steps and not every cell is observed at each
time step. Explicitly considering this no-observation case al-
lows us to update and estimate the parameters of the model
using the HMM framework directly without having to ar-
tificially distinguish between cells that are observed and
cells that are not. The concrete observation probability for
a no-observation does not affect the results as long as the
proportion between the two remaining probabilities remains
unchanged. The probabilities can be specified by three ma-
trices

Bz =

[
p(z | c = occ) 0

0 p(z | c = free)

]
, (4)

where z ∈ {hit,miss, no-observation}.
From the discussion above it can be seen that occupancy

grids are a special case of our model where the transition
probabilities po|fc and pf |oc are 0 for all cells c.

Occupancy State Update
The update of the occupancy state of the cells follows a
Bayesian approach. The goal is to estimate the posterior dis-
tribution p(ct | z1:t) over the current occupancy state ct of
a cell given all the available evidence z1:t up to time t. The
update formula is:

p(ct | z1:t) =

η p(zt | ct)
∑
ct−1

p(ct | ct−1) p(ct−1 | z1:t−1) , (5)

where η is a normalization constant. The structure of our
particular HMMs allows for a simple and efficient imple-
mentation of this recursive approach. Utilizing the matrix
notation and defining the posterior at time t as the vector

Qt = [p(ct = occ | z1:t) p(ct = free | z1:t)] , (6)

one can easily compute the posterior at time t+ 1 as

Qt+1 = QtAcBzt+1
η . (7)

Note that replacing the sum in (5) with the posterior
p(ct | z1:t−1), or equivalently, the matrix A in (7) with the
identity matrix I , we obtain the map update approach for oc-
cupancy grids described by Thrun, Burgard, and Fox (2005),
which is widely used in mobile robotics.

State Prediction
Equation (7) can be used directly to estimate the future state
of a cell or estimate the current state of a cell that has not
been observed recently. Updating Qt with k consecutive

no-observation readings results in an unbiased estimator for
Qt+k. As k tends to infinity, the occupancy value of a cell
converges to a unique stationary distribution πc. As in (7)
Bno-observation η = I , the stationary distribution must satisfy

πc = πcAc . (8)

From (8), the stationary distribution for our concrete HMMs
can be computed as

πc =
1

p
o|f
c + p

f |o
c

[
p
o|f
c p

f |o
c

]
. (9)

The time needed for the occupancy value of a cell to
converge to πc its called the mixing time. In this paper we
consider the total variation distance (see Levin, Peres, and
Wilmer (2006)) to measure the distance between the two dis-
tributions. Since our HMMs have only two states, the total
variation distance ∆k between the stationary distribution πc
and the occupancy distribution p(ct) at time t can be speci-
fied as

∆k = |1− po|fc − pf |oc |
k

∆0 , (10)

where

∆0 = |p(ct = occ)− πc(occ)| = |p(ct = free)− πc(free)|

is the difference between the occupancy probability p(ct) of
a cell at time t and its stationary distribution πc.

Based on the total variation distance, an approximation of
the mixing time kmix(ε) can then be defined as the smallest
k such that ∆k is less than a given value ε. For a given ε, it
can be analytically computed as

kmix(ε) =

⌈
ln(ε/∆0)

ln(|1− po|fc − pf |oc |)

⌉
, (11)

where d·e is the ceiling operator. Equation (11) can be
derived from (10) by straightforward algebraic operations.
Note that this computation is valid only when ∆0 > 0, for
the opposite case, kmix(ε) is trivially 0.

Being able to compute the mixing time of a cell has im-
portant practical implications, since it renders the computa-
tion of predicted occupancy values beyond the mixing time
unnecessary. This can be exploited to update successively
unobserved parts of the grid map in an efficient way.

Parameter Estimation
As mentioned above, an HMM is characterized by the state
transition probabilities, the observation model, and the ini-
tial state distribution. We assume that the observation model
only depends on the sensor used and not on the location.
Therefore it can be specified beforehand and is the same for
each HMM. We also assume the same uniform initial state
distribution for each cell. Thus, the parameters to be learned
are the state transition probabilities of the cell.

One of the most popular approaches for estimating the
parameters of an HMM from observed data is an instance
of the expectation-maximization (EM) algorithm. The basic
idea is to iteratively estimate the model parameters using the
observations and the parameters estimated in the previous



iteration until the values converge. Let θ̂(n) represent the pa-
rameters estimated at the n-th iteration. The EM algorithm
results in the following re-estimation formula for the transi-
tion model of cell c :

p̂(ct = i | ct−1 = j)(n+1) =∑T
τ=1 p(cτ−1 = i, cτ = j | z1:T , θ̂(n))∑T

τ=1 p(cτ−1 = i | z1:T , θ̂(n))
, (12)

where i, j ∈ {free, occ} and T is the length of the obser-
vation sequence. Note that the probabilities on the right-
hand side are conditioned on the observation sequence z1:T
and the previous parameter estimates θ̂(n). The probabili-
ties in (12) can be efficiently computed using a forward-
backward procedure (Rabiner 1989).

The mentioned algorithm, however, is an offline approach
that requires storing the complete observation sequence for
each cell. An online version of the algorithm was derived
by Mongillo and Deneve (2008). To calculate the transition
probabilities in (12), this algorithm only needs to store the
sufficient statistics
φijh(t; θ̂) =

1

t

t∑
τ=1

δ(zτ , h) p(cτ−1 = i, cτ = j | z1:t, θ̂) , (13)

where i, j ∈ {free, occ}, h ∈ {hit,miss, no-observation},
and δ(zτ , h) = 1 if zτ = h and 0 otherwise. Dropping the
dependence on θ̂, only 16 values have to be stored. The al-
gorithm uses φijh instead of the probabilities computed with
the forward-backward procedure to estimate the transition
model. Therefore it implements only a partial expectation
step, while the maximization step remains exact.

Besides being an online approach with small storage re-
quirements, the pre-factor 1/t in (13) allows the algorithm to
handle non-stationary environment dynamics. Additionally,
the algorithm updates with each observation the occupancy
state. These properties make the online version of the EM al-
gorithm an attractive alternative for systems operating over
extended periods of time.

Experimental Evaluation
We implemented our proposed model and tested it in simu-
lation and using data obtained with a real robot. The goal of
the experiments was to evaluate the quality and usefulness
of our representation.

Accuracy of the Representation
In a first experiment we evaluated the accuracy of our pro-
posed mapping approach. We steered a MobileRobot Power-
bot equipped with a SICK LMS laser range finder through
a parking lot. We recorded twelve data sets {d1, . . . , d12}
that consist of laser range data and odometry collected at
every full hour from 7am until 6pm during one day. Accord-
ingly, the data correspond to twelve different configurations
of parked cars. We used a simultaneous localization and
mapping (SLAM) approach (Grisetti, Stachniss, and Bur-
gard 2005) to correct the odometry of the robot and to de-
termine its trajectory, which was then used together with the

Figure 2: Qualitative evaluation of our proposed model.
Shown are the ground truth maps m3 (top left) and m12 (top
right) , our mapsm?

1:3 andm?
1:12 (middle row, left and right),

and standard occupancy grids m1:3 and m1:12 (bottom row,
left and right).

range measurements to generate the maps for our experi-
ments. Range measurements were sampled at about 1 Hz.
The path and the velocity of the robot in each of the runs
were approximately the same to avoid a bias in the com-
plete data set. We evaluated the long-term maps m?

1:i built
from the data sets d1, . . . , di with our approach against the
long-term maps m1:i built from the data sets d1, . . . , di with
the standard occupancy grid mapping approach described
by (Thrun, Burgard, and Fox 2005). Since, during each of
the individual runs, the parking lot did not change consid-
erably, we used the standard occupancy grid maps mi built
from the data set di of the single runs as ground truth.

Figure 2 shows a qualitative comparison between our rep-
resentation and standard occupancy grids. Here, we used the
online EM approach to learn the parameters of our model.
In the figure, the ground truth grid-maps m3 and m12 are
shown in the first row. While the second row contains the
maps m?

1:3 and m?
1:12 that were obtained with our method,

the third row depicts the standard occupancy grids m1:3 and
m1:12. As can be seen our representation quickly adapts to
the changes in the parking lot. Thus it constitutes a more ac-
curate representation of the environment than standard oc-
cupancy grid maps at any point in time. Additionally, our
model also represents the probable occupancy of areas that
have not been recently observed. The light-gray rectangles
in the map m?

1:12, for example, correspond to predicted re-
appearances of cars in the parking lot.
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Figure 3: Accuracy of the representation over time for the
parking lot data. Both online and offline parameter estima-
tion approaches were evaluated.

To quantitatively evaluate the accuracy of our representa-
tion, we computed its accuracy with respect to the ground
truth maps. In this context, accuracy is defined as the num-
ber of correctly classified cells divided by the total num-
ber of classified cells. A cell c was classified as occupied
if p(c) > 0.5 and as free if p(c) < 0.5. This accuracy in-
directly reflects the quality of the learned model parame-
ters. Figure 3 compares the accuracy of a standard occu-
pancy grid (static) against that of our model obtained using
the online (online) and offline (offline) parameter estima-
tion approaches. The figure plots the accuracy of the grids
over time for the parking lot data. After each configuration
change, the accuracy of our model quickly starts to increase
as the representation adapts to the new configuration. Occu-
pancy grids adapt relatively quickly at first, but their adapt-
ability decreases with the number of observations already
integrated into the map. Note that our mapping approach
is not restricted to slowly changing or semi-static environ-
ments like the parking lot and can also be utilized in more
dynamic environmets like the one shown in Figure 1.

Influence of the Environment’s Dynamics
The goal of this experiment was to evaluate the accuracy of
our proposed representation for different environment dy-
namics. In the context of occupancy grids, the dynamics of
the environment are characterized by the number of dynamic
cells and their state change probabilities. To generate data
corresponding to different environment dynamics we used
a 50 × 50 grid map and changed the fraction of dynamic
cells and state change probabilities. We randomly selected
the locations of the dynamic cells (a more involved simula-
tion would have yielded the same results) and estimated the
state transition probabilities using both the online and offline
approaches for different data sets. Figure 4 compares the re-
sulting model accuracy against that of a standard occupancy
grid for two different settings: one relatively static and an-
other more dynamic. The curves correspond to the mean and
standard deviation for 10 repetitions of the experiment. As
can be seen, our model represents the environment more ac-
curately than standard occupancy grids even for moderately
dynamic environments.

Parameter Estimation
As can be seen in Figure 4, the offline approach produces
more accurate results at first, but the difference between the
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Figure 4: Accuracy of the representation for different con-
figurations of dynamic cells in a simulated grid map. Left:
5 % dynamic cells and 5 % state change probability. Right:
25 % dynamic cells and 25 % state change probability
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Figure 5: Accuracy of the representation when the dynamics
of the environment changes. The left and right plots corre-
spond to changes after 100 and 300 time steps respectively.

results of the two approaches decreases over time. This sug-
gests that, regarding the accuracy of the representation, both
parameter estimation techniques are comparable.

Although the offline approach produces good results from
the beginning, it requires storing all observations for each
cell in the grid for an a priori training phase. Furthermore,
being an offline approach, once the parameters have been es-
timated, they remain fixed. This makes the offline approach
less appropriate for environments in which the assumption
that the dynamics are stationary does not hold. In such sit-
uations the online approach provides better results, since it
continually adapts its parameters as new observations be-
come available. Figure 5 illustrates the effects of a change
in the environment dynamics on the accuracy of the repre-
sentation. The model parameters were obtained with the on-
line and offline approaches for 5 % dynamic cells and 5 %
state change probability (corresponding to the left plot in
Figure 4). For the experiment, the change consisted in se-
lecting a new set of dynamic and static cells. The number of
dynamic cells and their state change probabilities remained
the same, but we obtained similar results when these param-
eters were changed as well. As can be seen in the figure,
using the online approach, the accuracy of the representa-
tion quickly returns to its value before the change. This is
the consequence of the model parameters adapting to the
new environment dynamics. The accuracy of the representa-
tion, whose parameters were estimated offline, drops when
the dynamics change and remains low. We also evaluated
the behavior of a standard occupancy grid. As expected, the
number of observations needed by the occupancy grid to
correctly represent the new static cells is approximately the
same as the number of previous observations.



values in % static online offline random optimal
short (optimal) 11.25 (±16.35) 25.50 (±22.24) 40.75 (±20.15) 24.25 (±10.17) 40.50 (±19.99)
long (optimal) 35.75 (±14.80) 27.00 (±18.38) 15.00 (±9.03) 24.25 (±13.70) 17.25 (±9.39)

indirect long 4.75 (±1.12) 19.50 (±12.24) 30.50 (±8.72) 23.50 (±9.33) 27.75 (±9.24)
unnecessary indirect long 0.25 (±1.12) 1.50 (±2.86) 2.75 (±3.02) 1.50 (±2.86) 2.25 (±3.02)

unnecessary direct long 48.00 (±16.89) 26.50 (±21.34) 11.00 (±5.28) 26.50 (±13.19) 12.25 (±6.38)

effectiveness 47.00 (±16.89) 52.50 (±16.10) 55.75 (±13.21) 48.50 (±10.14) 57.75 (±14.09)

Table 1: Occurrences of different types of planned paths for different environment models and parameter estimation approaches.

A
BC

Figure 6: Experimental setup for the path planning experi-
ment. The task consists in navigating between A and B. At
C we added a virtual door that changed its state over time.

Path Planning
In the previous experiments we showed that our representa-
tion readily adapts to changes in the environment. The goal
of this experiment was to show that this adaptability can be
used to improve the path planning performance of a robot.
The experiment was performed in simulation within the en-
vironment shown in Figure 6. The task of the robot was to
navigate between positions A and B. We added a virtual
door at position C along the shortest path between A and
B. To generate the a priori map needed for path planning
and obtain data for estimating the parameters of our model,
we steered the robot through the relevant parts of the envi-
ronment in an offline phase.

We applied the A? algorithm and performed re-planning
at every time step. The traversal cost for each cell was com-
puted based on its occupancy state at the corresponding mo-
ment (1 for free and ∞ for occupied cells after a clipping
operation). We then performed 20 repetitions of the experi-
ment. In each of them, the robot executed 20 runs from one
position to the other.

To abstract from the specific structure of the environment,
we performed our evaluation based on a classification of the
trajectories followed by the robot into five different types
and compared the numbers of occurrences of each different
class. We opted for this qualitative evaluation criterion since
other performance measures, like traveled distance or exe-
cution time, largely depend on the particular environment
used in the experiment, which can arbitrarily bias the results
in either direction. We considered the following five classes:
When the robot took the shortest path: short. When the robot
took the longer path: long. In this case, the longer path was
the optimal choice. When the robot tried to take the shortest
path first, found the door closed, and then took the longer

path: indirect long. In this case, taking the longer path from
the beginning would have been the optimal choice. When
the robot tried to take the shortest path first, found the door
closed, and then followed the longer path: unnecessary in-
direct long. In this case, however, continuing to follow the
shortest path would have been the optimal choice since the
door would have opened for the robot to pass. When the
robot took the longer path and no attempt was made to fol-
low the shortest path: unnecessary direct long. In this case,
taking the shortest path from the beginning would have been
the optimal choice.

The values in Table 1 correspond to the occurrences (aver-
age and standard deviation) of the different trajectory types
during the repetitions of the experiment. We compared the
path planning performance when using a standard occu-
pancy grid (static), our model obtained using the online ap-
proach (online), and using the offline approach (offline). The
number of occurrences of short and long trajectories in the
table indicate that the information about the state change
probability of the door represented in our model leads to
better path planning performances. Once the door is rep-
resented as closed in the occupancy grid (static), the robot
never attempts to follow the shortest path again. This can be
seen in the table by the small number of short, indirect long,
and unnecessary indirect long trajectories and explains the
large number of long trajectories. Using our model, on the
other hand, the state of the (unobserved) door in the map
changes over time according to the learned state transition
probabilities. Whenever the cells corresponding to the door
are classified as free, the robot attempts to follow the short-
est path.

We additionally implemented two baseline path planning
policies for comparison. In the first (random) the robot,
when inA orB, randomly chooses between the two possible
paths. In the second (optimal) it has perfect knowledge about
the state change probability of the door and based on its in-
ternal belief about the state of the door chooses the expected
optimal path. The percentage of runs in which the optimal
path was followed (effectiveness) by this robot is an empir-
ical upper bound for the effectiveness achievable in this ex-
periment. One-sided t-tests revealed that the effectiveness of
offline was significantly higher than that of static and ran-
dom on a 5% level. Between the effectiveness of offline and
optimal we could not find a significant difference. The re-
sults indicate that, even using a standard planning approach,
our maps lead to an improved path planning performance.



Conclusions
In this paper we described an approach to occupancy grid
mapping that utilizes HMMs to represent the occupancy of
each grid cell and explicitly models how this occupancy
changes over time. We described an offline and an online
learning technique to estimate the model parameters from
data. We furthermore discussed how our maps can be up-
dated as new observations become available and how to pre-
dict the future state of a cell. We evaluated our approach
in simulation and using real-world data. The results demon-
strate that our model is well-suited for representing chang-
ing environments and it can also be utilized to improve path
planning performance of a mobile robot.

In our future work we want to relax the assumption that
the pose of the robot is known when the robot is building
the map. More specifically, we plan to integrate our model
into a simultaneous localization and mapping approach. Ad-
ditionally, we will investigate how to exploit the information
encoded in the state transition probabilities of the HMMs in
a customized path planning approach.
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